
Programming QGIS

with

Custom Python

Expression Functions

Prof. Stefan Keller
Simran Khare

Geometa Lab
HSR Hochschule für Technik Rapperswil

1. Introduction

Expressions in QGIS

 Select all features where “feature_name” = ‘Zürichsee’ OR feature_name = ‘Walensee’

 Select all features where “feature_name” LIKE ‘%see’

• Built in functions that can be used in QGIS expressions.

• Examples:

Expression Functions (EFn)

 Get the maximum population: maximum(“population”)

 Determine the hemisphere: CASE WHEN “latitude” > 0 THEN ‘North’ ELSE ‘South’

• QGIS supports expression based selections, filters, labels, field

calculations, and much more.

• Look out for the expression symbol:

Q. What if we want to do something more interesting?

A. Write a Custom Python Expression Function for it

In this workshop

1.

Feature

Selection

2.

Feature

Labeling

3.

Field

Calculation

Using Custom Expression Functions for:

4.

Recap with

OSM Data

@qgsfunction(args='auto', group='Custom', referenced_columns=['column_name'])

def function_name(input_value, feature, parent):

Statements to be executed

return return_value

Syntax for Custom Python Expression Functions

• args: the number of arguments the function receives, excluding feature

and parent. Defaults to ‘auto’.

• group: the group in which the function would be placed in the expression

builder UI.

• referenced_columns: any columns or attributes that would be accessed

within the function

 Every custom EFn must receive feature and parent as its last two parameters.

 The function must be preceded by the Python decorator: @qgsfunction.

2. Hands on Exercises

Getting Started

Prerequisite

Working installation of QGIS

• Latest: 2.18 (The future LTR)

• LTR: 2.14

• The code has been tested with QGIS 2.18, but should also work with

QGIS 2.14.

• More information about the difference between versions 2.18 and 2.14

is available on Github.

Link: https://github.com/simran001/GeoPython-Workshop

Getting the code and sample data

• The code and workshop plan on Github:

https://github.com/simran001/GeoPython-Workshop

Short URL: https://goo.gl/ZaDxs6

• Dataset:

Populated Places Simple from Natural Earth

http://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-populated-places/

• Downloading the code:

• Navigate to /python/expressions in the folder where QGIS is installed.

 Linux and Mac: ~/.qgis2/python/expressions

 Windows: %userprofile%/.qgis2/python/expressions

Feature Selection with Custom EFn

Task 1

Task 1.1. Select all capital cities with population greater

than a user defined number.

• Dataset used: Populated Places Simple

• Function: is_populous_capital()

@qgsfunction(args='auto', group='Custom', referenced_columns=['featurecla’, ‘pop_max’])

def is_populous_capital(input_pop, feature, parent):

is_capital = feature['featurecla’] == ‘Admin-0 capital’

is_populous = feature[‘pop_max’] > ‘input_pop’

return is_capital and is_populous

is_populous_capital(2000000)

In the Expression tab, we can call the function as below to select

all capital cities with a population greater than 2 million.

Task 1.2. Select features based on the value of their

calculated UTM Zone.

• Dataset used: Populated Places Simple

• Function: get_utm_zone()

UTM Zones In The World:

Feature Labeling with Custom EFn

Task 2

Task 2.1. Label all points as ‘City_Name: Population_Rank’.

• Dataset used: Populated Places Simple

• Function: get_population_rank()

Task 2.2. Display Map Tips as

‘City_Name: UTM_Zone: Population_Rank’.

• Dataset used: Populated Places Simple

• Function: get_utm_zone() and get_population_rank()

Field Calculation with Custom EFn

Task 3

Task 3. Writing an expression function to calculate a new

‘address’ field using reverse geocoding

Reverse geocoding generates an address from a given latitude and

longitude. We will be using Nominatim’s reverse geocoding API, which is the

search engine used for Openstreetmap data.

Parameters:

http://nominatim.openstreetmap.org/reverse?<query>

lat = <value> & lon = <value>

format = [xml | json]

The address will be found in the ‘display_name’.

Recap with OSM Data

