
Programming QGIS

with

Custom Python

Expression Functions

Prof. Stefan Keller
Simran Khare

Geometa Lab
HSR Hochschule für Technik Rapperswil

1. Introduction

Expressions in QGIS

 Select all features where “feature_name” = ‘Zürichsee’ OR feature_name = ‘Walensee’

 Select all features where “feature_name” LIKE ‘%see’

• Built in functions that can be used in QGIS expressions.

• Examples:

Expression Functions (EFn)

 Get the maximum population: maximum(“population”)

 Determine the hemisphere: CASE WHEN “latitude” > 0 THEN ‘North’ ELSE ‘South’

• QGIS supports expression based selections, filters, labels, field

calculations, and much more.

• Look out for the expression symbol:

Q. What if we want to do something more interesting?

A. Write a Custom Python Expression Function for it

In this workshop

1.

Feature

Selection

2.

Feature

Labeling

3.

Field

Calculation

Using Custom Expression Functions for:

4.

Recap with

OSM Data

@qgsfunction(args='auto', group='Custom', referenced_columns=['column_name'])

def function_name(input_value, feature, parent):

Statements to be executed

return return_value

Syntax for Custom Python Expression Functions

• args: the number of arguments the function receives, excluding feature

and parent. Defaults to ‘auto’.

• group: the group in which the function would be placed in the expression

builder UI.

• referenced_columns: any columns or attributes that would be accessed

within the function

 Every custom EFn must receive feature and parent as its last two parameters.

 The function must be preceded by the Python decorator: @qgsfunction.

2. Hands on Exercises

Getting Started

Prerequisite

Working installation of QGIS

• Latest: 2.18 (The future LTR)

• LTR: 2.14

• The code has been tested with QGIS 2.18, but should also work with

QGIS 2.14.

• More information about the difference between versions 2.18 and 2.14

is available on Github.

Link: https://github.com/simran001/GeoPython-Workshop

Getting the code and sample data

• The code and workshop plan on Github:

https://github.com/simran001/GeoPython-Workshop

Short URL: https://goo.gl/ZaDxs6

• Dataset:

Populated Places Simple from Natural Earth

http://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-populated-places/

• Downloading the code:

• Navigate to /python/expressions in the folder where QGIS is installed.

 Linux and Mac: ~/.qgis2/python/expressions

 Windows: %userprofile%/.qgis2/python/expressions

Feature Selection with Custom EFn

Task 1

Task 1.1. Select all capital cities with population greater

than a user defined number.

• Dataset used: Populated Places Simple

• Function: is_populous_capital()

@qgsfunction(args='auto', group='Custom', referenced_columns=['featurecla’, ‘pop_max’])

def is_populous_capital(input_pop, feature, parent):

is_capital = feature['featurecla’] == ‘Admin-0 capital’

is_populous = feature[‘pop_max’] > ‘input_pop’

return is_capital and is_populous

is_populous_capital(2000000)

In the Expression tab, we can call the function as below to select

all capital cities with a population greater than 2 million.

Task 1.2. Select features based on the value of their

calculated UTM Zone.

• Dataset used: Populated Places Simple

• Function: get_utm_zone()

UTM Zones In The World:

Feature Labeling with Custom EFn

Task 2

Task 2.1. Label all points as ‘City_Name: Population_Rank’.

• Dataset used: Populated Places Simple

• Function: get_population_rank()

Task 2.2. Display Map Tips as

‘City_Name: UTM_Zone: Population_Rank’.

• Dataset used: Populated Places Simple

• Function: get_utm_zone() and get_population_rank()

Field Calculation with Custom EFn

Task 3

Task 3. Writing an expression function to calculate a new

‘address’ field using reverse geocoding

Reverse geocoding generates an address from a given latitude and

longitude. We will be using Nominatim’s reverse geocoding API, which is the

search engine used for Openstreetmap data.

Parameters:

http://nominatim.openstreetmap.org/reverse?<query>

lat = <value> & lon = <value>

format = [xml | json]

The address will be found in the ‘display_name’.

Recap with OSM Data

