PostGIS Terminal Examples: Unterschied zwischen den Versionen

Aus Geoinformation HSR
Wechseln zu: Navigation, Suche
K (Alle OeV-Haltestellen)
K (Alle OeV-Haltestellen)
Zeile 145: Zeile 145:
 
* Es hat 4000(!) mehr als in OSM als Didok/uic_name eingetragene Nodes?
 
* Es hat 4000(!) mehr als in OSM als Didok/uic_name eingetragene Nodes?
 
* Tags-Zusammenstellung aus DIDOK: https://github.com/datendelphin/didok/blob/master/db-import/import_stops.py
 
* Tags-Zusammenstellung aus DIDOK: https://github.com/datendelphin/didok/blob/master/db-import/import_stops.py
* "SELECT way FROM osm_polygon WHERE osm_id=-51701" gibt die Schweizer Grenze zurück
+
* "SELECT way FROM osm_polygon WHERE osm_id=-51701" gibt die Schweizer Grenze zurück ([[EOSMDBOne]] enthält auch Teile des angrenzenden Auslands!).
  
 
   -- Just run this e.g. in PostGIS Terminal:
 
   -- Just run this e.g. in PostGIS Terminal:

Version vom 25. Januar 2017, 20:49 Uhr

Here are some examples queries for the PostGIS Terminal.

See also PostGIS - Tipps und Tricks.

Simple SQL Queries

Alle Geonamen, die bereits in Schweizerdeutscher Mundart ("name:gsw") erfasst sind

 SELECT 
   ST_AsText(way) geom,
   tags->'name:gsw' AS label
 FROM osm_poi
 WHERE tags ? 'name:gsw'

Finding a string part of a tag key or a tag value

 SELECT osm_id, name, key
 FROM (SELECT osm_id, name, skeys(tags) AS key 
       from osm_point) tmp
 WHERE key LIKE 'generator%';
 SELECT osm_id, name, value
 FROM (SELECT osm_id, name, svals(tags) AS value 
       FROM osm_polygon) tmp
 WHERE value LIKE 'nuclear%';


Alle Zoos der Schweiz

(Tipp: http://labs.geometa.info/postgisterminal/?xapi=*[tourism=zoo]):

  SELECT ST_AsText(way) AS geom, name||' '||osm_id AS label
  FROM osm_all
  WHERE tags @> hstore('tourism','zoo')  

Schweizer Kernkraftwerke mit 40 Km-Puffer

  SELECT
   ST_AsText(ST_Buffer(ST_Centroid(way),40000)) AS geom,
   name AS label
  FROM osm_all
  WHERE tags @> hstore('generator:source','nuclear')  

Alle Restaurants mit Namen 'Rössli' der Schweiz

  SELECT ST_AsText(way) AS geom, name AS label
  FROM osm_point
  WHERE amenity = 'restaurant'
  AND name ILIKE '%rössli%'  


Alle 4000er Berggipfel der Schweiz =

  SELECT ST_AsText(way) AS geom, name||','||ele AS label
  FROM osm_point
  WHERE "natural" = 'peak'
  AND  to_number('0'||ele, '99999999999.000')::int >= 4000
  
  oder:
  
  SELECT ST_AsText(way) AS geom, COALESCE(name, '')||' '||osm_id AS label
  FROM osm_poi
  WHERE tags @> hstore('natural', 'peak')
  AND CAST(regexp_replace(hstore("tags")->'ele', '[^0-9\.]', '', 'g') AS real) >= 4000  

Alle Aussichtspunkte im Kanton Zürich, die höher als 500 m ü.M. sind

  SELECT ST_AsText(a.way) geom, COALESCE(name, '')||' '||ele||' m ü.M' AS label
  FROM 
    osm_point AS a, 
    (SELECT way FROM osm_polygon 
     WHERE name = 'Zürich'
     AND tags @> hstore('admin_level','4')) AS b
  WHERE ST_Contains(b.way,a.way)
  AND tags @> hstore('tourism','viewpoint')
  AND  to_number('0'||ele, '99999999999.000')::int >= 500   

Alle Picnic-Plätze und Aussichtspunkte im aktuellen Kartenausschnitt

  SELECT ST_AsText(way) AS geom, name AS label
  FROM osm_point
  WHERE tourism IN ('picnic_site','viewpoint')
  AND ST_Contains(mapextent(), way)  

Alle Schulhäuser im Umkreis von 40 km aller Kernkraftwerke

  SELECT ST_AsText(a.way) AS geom, '' AS label
  FROM 
    osm_poi AS a, 
    (SELECT ST_Buffer(ST_Centroid(way),40000) AS way
     FROM osm_poi
     WHERE tags @> hstore('generator:source','nuclear')) AS b
  WHERE ST_Within(a.way,b.way)
    AND a.tags @> hstore('amenity', 'school')
  UNION
  SELECT ST_AsText(ST_Buffer(ST_Centroid(way),40000)) AS geom, COALESCE(name, '') AS label
  FROM osm_poi
  WHERE tags @> hstore('generator:source','nuclear')
  LIMIT 2000  

Die nächsten 10 Bars in der Nähe von 'mylocation' (ungeachtet der Distanz)

  SELECT ST_AsText(osm_poi.way) AS geom, COALESCE(name, '') AS label
  FROM 
    osm_poi, 
    (SELECT ST_Transform(ST_GeomFromText('POINT(8.81638 47.22666)', 4326), 900913) AS way) AS mylocation
  WHERE osm_poi.tags @> hstore('amenity', 'bar')
  ORDER BY osm_poi.way <-> mylocation.way
  LIMIT 10  

Die nächsten 100 Restaurants in der Nähe von 'mylocation' im Umkreis von max. 20 Km (Luftlinie)

  SELECT ST_AsText(osm_poi.way) AS geom, COALESCE(name, '') AS label
  FROM 
    osm_poi, 
    (SELECT ST_Transform(ST_GeomFromText('POINT(8.81638 47.22666)', 4326), 900913) AS way) AS mylocation
  WHERE ST_DWithin(osm_poi.way, mylocation.way, 20000)
  AND osm_poi.tags @> hstore('amenity', 'restaurant')
  ORDER BY osm_poi.way <-> mylocation.way
  LIMIT 100  

Alle Strassen mit Namen "Bahnhofstrasse" im Kt.ZH

 
  SELECT ST_AsText(ST_LineMerge(w.way))
  FROM osm_line w, 
       (SELECT way FROM osm_polygon 
        WHERE name = 'Zürich'
        AND tags @> hstore('admin_level','4')) AS p
  WHERE w.name = 'Bahnhofstrasse'
  AND (hstore("tags")->'highway') IS NOT NULL
  AND ST_Within(w.way, p.way)   

Bounding Box gegeben ein geografischer Name (Beispiel "Entlebuch")

  • Enter Entlebuch in http://boundingbox.klokantech.com/
  • Select DublinCore (and reduce to 4 digits) => westlimit=7.9891; southlimit=46.9419; eastlimit=8.3543; northlimit=47.1263
  • Place coords. in Polygon:
 
  SELECT ST_AsText( ST_Transform( ST_GeomFromText(
    'MULTIPOLYGON(((7.9891 47.1263, 8.3543 47.1263, 
                    8.3543 46.9419, 7.9891 46.9419, 
                    7.9891 47.1263)))', 4326), 900913) )   

Alle OeV-Haltestellen

 -- Just run this e.g. in PostGIS Terminal:
 SELECT count(*) 
 FROM osm_point AS osm 
 WHERE ST_Within(osm.way, (SELECT way FROM osm_polygon WHERE osm_id=-51701))
 AND NOT (tags ? 'uic_name')
 AND (tags @> 'railway=>station' OR tags @> 'railway=>halt' OR tags @> 'railway=>tram_stop' 
      OR tags @> 'highway=>bus_stop' OR tags @> 'amenity=>bus_station' 
      OR tags @> 'amenity=>ferry_terminal' OR tags @> 'railway=>funicular' OR tags @> 'aerialway=>station')
 -- 4935, query runtime: 31271 ms.
 -- Use PostGIS Terminal to visualize the stops not in Didok (uic_name):
 SELECT ST_AsText(way) as geom, coalesce(name,) as label
 FROM osm_point AS osm 
 WHERE ST_Within(osm.way, (SELECT way FROM osm_polygon WHERE osm_id=-51701))
 AND NOT (tags ? 'uic_name')
 AND (tags @> 'railway=>station' OR tags @> 'railway=>halt' OR tags @> 'railway=>tram_stop' 
      OR tags @> 'highway=>bus_stop' OR tags @> 'amenity=>bus_station' 
      OR tags @> 'amenity=>ferry_terminal' OR tags @> 'railway=>funicular' OR tags @> 'aerialway=>station')
 -- Get result as GeoCSV/WKT - to be run e.g. in psql or pgAdmin and export result to file:
 SELECT osm_id, coalesce(name,) as name, ST_AsText(ST_Transform(way,4326)) as wkt 
 FROM osm_point AS osm 
 WHERE ST_Within(osm.way, (SELECT way FROM osm_polygon WHERE osm_id=-51701))
 AND NOT (tags ? 'uic_name')
 AND (tags @> 'railway=>station' OR tags @> 'railway=>halt' OR tags @> 'railway=>tram_stop' 
      OR tags @> 'highway=>bus_stop' OR tags @> 'amenity=>bus_station' 
      OR tags @> 'amenity=>ferry_terminal' OR tags @> 'railway=>funicular' OR tags @> 'aerialway=>station')
 -- Resultat in https://gist.github.com/sfkeller/a18675d2190c4e121549e745474dc80f

Complex SQL Queries

Select names of all OSM-objects containing 'zoo' at start middle or end (using wildcard '%' in String):

 SELECT ST_AsText(way) geom,
 COALESCE(name, ' ')||' '||osm_id label
 FROM osm_all
 WHERE hstore(tags)->'name' ILIKE '%zoo%'

Select all parking lots for disabled persons (Rollstuhlparkplatz / wheel parking) within visible map area (without FIXME). Note: Tag capacity:disabled currently occurs always together with amenity={parking, parking_space, parking_entrance}):

 SELECT ST_AsText(way) geom, 
        COALESCE(name,' ')||' ('||COALESCE(SUBSTRING((tags->'capacity:disabled') FROM E'[0-9]+'),' ')||')' label
 FROM osm_poi
 WHERE (tags @> '"capacity:disabled"=>"yes"' 
        OR SUBSTRING((tags->'capacity:disabled') FROM E'[0-9]+')::int > 0)
 AND ST_Contains(mapextent(), way)

Select all motorways (higways) with speed limit greater or equal than 100:

 SELECT ST_AsText(way) geom
 FROM osm_line
 WHERE tags @> '"highway"=>"motorway"'
 AND COALESCE(SUBSTRING((tags->'maxspeed') FROM E'[0-9]+')::int,0) >= 100
 -- 1806!

Count tags except xxx...:

 SELECT array_upper(%# tags, 1) AS "#tags", count(*) AS "count"
 FROM osm_point
 WHERE array_upper(%# tags, 1) > 0
 AND NOT EXISTS (SELECT skeys FROM skeys(tags) WHERE skeys LIKE 'xxx:%')
 GROUP BY 1
 ORDER BY 1

Point Clustering with round/truncate to grid and centroid. Parameter 9000 defines the grid width (meter) and is dependent from the units of the coordinate reference systems. Fast - reduces 13358 Restaurants to 1163 - but with a "visual grid effect".

 SELECT
   ST_AsText( ST_Centroid(ST_Collect(position)) ) AS geom,
   CASE COUNT(position)
     WHEN 1 THEN COALESCE(max(name), '1') ELSE COUNT(position)::text
   END AS label,
   array_agg(osm_id) AS list_of_ids 
 FROM (
   SELECT way AS position, name, osm_id 
   FROM osm_poi
   WHERE tags @> hstore('amenity','restaurant')
 ) tmp
 GROUP BY ST_SnapToGrid(position, 9000);

Marker Queries

marker query (must have exactly field names lon, lat, title and description):

 SELECT X(p2.way) AS lon, Y(p2.way) AS lat, 'Briefkasten' AS title, p2.ref AS description
 FROM planet_osm_polygon p1
 JOIN planet_osm_point p2 ON CONTAINS(p1.way, p2.way)
 WHERE p1.name = 'Uster'
 AND p2.amenity = 'post_box'

Extension with user defined marker icon (attribute 'icon'):

 SELECT X(p2.way) AS lon, Y(p2.way) AS lat, 'Briefkasten' AS title, p2.ref AS description, 'http://myserver/marker.png' as icon 
 FROM planet_osm_polygon p1
 JOIN planet_osm_point p2 ON CONTAINS(p1.way, p2.way)
 WHERE p1.name = 'Uster'
 AND p2.amenity = 'post_box'

Mouse Queries

Finding Nearest Point to Linestrings (Snapping)

  • Lösung mit Distanzen innerhalb 50m (siehe ST_DWithin).
  • Anwendung: PostGIS-Terminal aufrufen, Copy&Paste dieser Query, dann in Karte klicken.
  • Bemerkungen:
    • (_mouse_x, _mouse_y) liefern die Mauskoordinaten (anstelle mypos).
    • Die Lösung verwendet WITH-Klausel, da (_mouse_x, _mouse_y) vom Terminal nur einmal geparst werden (leider).
    • (tags->'highway') liefert die Strassenart, z.B. unclassified, pedestrian, etc.
    • (SELECT geom FROM tmp1) liefert die Mauskoordinaten
    • COALESCE(name,'NN') liefert NN wenn kein Name vorhanden
 WITH tmp1 AS ( 
   SELECT ST_SetSRID(ST_MakePoint(_mouse_x, _mouse_y), 900913) AS geom
 ), 
 tmp2 AS ( 
   SELECT osm_id, way, name, tags, ST_Distance((SELECT min(geom)::geometry FROM tmp1), way) as distance
   FROM osm_line
   WHERE (tags->'highway') IS NOT NULL
   AND ST_DWithin((SELECT geom FROM tmp1), way, 50)
 )
 SELECT 
   ST_AsText(way) AS geom, 
   COALESCE(name,'NN')||' ('||(tags->'highway')||')' AS label
 FROM tmp2
 ORDER BY distance
 LIMIT 1

(Fast) dasselbe wie oben aber mit KNN Index (<->) nun aber mit den 10 nächsten Linien (k-Nearest Neighbor (KNN) Index)

  • geordnet nach dem Zentrum der Bounding Boxes ('<->' Operator).
  • Hinweis: der <#> ordnet nach den Bounding Boxen selber (ab PostGIS 2.0 und PostgreSQL 9.1)
 WITH tmp1 AS ( 
   SELECT ST_SetSRID(ST_MakePoint(_mouse_x, _mouse_y), 900913) AS geom
 ), 
 tmp2 AS ( 
   SELECT osm_id, way, name, tags, ST_Distance((SELECT min(geom)::geometry FROM tmp1), way) as distance
   FROM osm_line
   WHERE (tags->'highway') IS NOT NULL
   ORDER BY way <-> (SELECT min(geom)::geometry FROM tmp1)
   LIMIT 10
 )
 SELECT 
   ST_AsText(way) AS geom, 
   COALESCE(name,'NN')||' ('||(tags->'highway')||')' AS label
 FROM tmp2
 ORDER BY distance
 LIMIT 1

Statistics

All tupels in all tables

 SELECT '1. '||to_char(count(*), '999G999G999')||' osm_point(s)'
 FROM osm_point
 UNION
 SELECT '2. '||to_char(count(*), '999G999G999')||' osm_poi(s)'
 FROM osm_poi
 UNION
 SELECT '3. '||to_char(count(*), '999G999G999')||' osm_line(s)'
 FROM osm_line
 UNION
 SELECT '4. '||to_char(count(*), '999G999G999')||' osm_polygon(s)'
 FROM osm_polygon
 UNION
 SELECT '5. '||to_char(count(*), '999G999G999')||' osm_nodes'
 FROM osm_nodes
 UNION
 SELECT '6. '||to_char(count(*), '999G999G999')||' osm_ways'
 FROM osm_ways
 UNION
 SELECT '7. '||to_char(count(*), '999G999G999')||' osm_rels'
 FROM osm_rels
 ORDER BY 1

All Tag-Value-Pairs of OSM data

Kann anstelle mit osm_point auch mit osm_all durchgeführt werden.

 --
 -- Key-Value Statistics of OSM Data
 -- Return all key-value-pairs of type 'enum' without some 
 -- types numeric, date/time etc. chosen by hand:
 -- 
 -- Alternative with separate tag-value: 
 -- SELECT tmp.key as tag, tmp.value as value, count(*)::integer as freq
 SELECT tmp.key||'='||tmp.value as kvp, count(*)::integer as freq 
 FROM (
   SELECT (each(tags)).key as key, (each(tags)).value as value 
   FROM osm_point) as tmp
 WHERE (trim(value) !~ '^[-]*[0-9,.:\ ]+[m]*$')
 AND NOT (value ILIKE '%fixme%' OR key ILIKE '%fixme%')
 AND key NOT LIKE '%:%'
 AND key NOT LIKE '%description%'
 AND key NOT LIKE '%comment%'
 AND key NOT LIKE '%name'
 AND key NOT LIKE 'uic_%'
 AND key NOT LIKE '%ref'
 AND key NOT ILIKE '%fixme%'
 AND key NOT ILIKE '%todo%'
 AND key NOT IN ('osm_timestamp', 'name','operator','_picture_','_waypoint_','address','alt','is_in','url','website','wikipedia','email',
                 'converted_by','phone','information','opening_hours','date','time','collection_times','colour','fee',
                 'population','access','noexit','towards','bus_routes','busline','lines','type','denotation',
                 'CONTINUE','continue','copyright','stop')
 GROUP BY tmp.key, tmp.value
 HAVING COUNT(*) > 1
 ORDER by freq DESC; -- ca. 500 sec.!